Baton Rouge Water Company is proud of the fine drinking water it provides. This 22nd annual water quality report for the monitoring period of January 1 to December 31, 2019, shows the source of our water, lists the results of the most recent test completed on our water in accordance with the National Primary Drinking Water Regulations, and contains important information about water and health. We at Baton Rouge Water Company are proud to have had “no violations” during this monitoring period and are happy to show you how we’ve surpassed EPAs National Primary Drinking Water quality standards. Our Source Water Assessment, for which we have a susceptibility ranking of medium by the Louisiana Department of Environmental Quality, is available for review in our offices during normal business hours.

Water Source

The Baton Rouge Water Company operates 99 ground water wells completed in the various sands of the Southern Hills aquifer system which underlie our service area. Water from these sands is of excellent quality with a natural low hardness concentration and is not subject to surface water influences. Our system is backed up by elevated storage tanks and diesel engines preventing widespread service outages if electrical service is interrupted.

Public Water Supply ID # 1033005

Water quality data for community water systems throughout the United States is also available on the world wide web at:

www.epa.gov/safewater

Contact Information

Baton Rouge Water Company
Post Office Box 96016
Baton Rouge, Louisiana 70896-9016

Our office location is:

8755 Goodwood Blvd
Baton Rouge, Louisiana 70806-7916

Our office hours are:

8:30 AM to 5:00 PM
Monday through Friday,
Except Holidays

We welcome your input into decisions affecting your drinking water service.

Please call us at:

(225) 925-2011

Or check out our website at:

www.batonrougewater.com

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien.
To ensure that tap water is safe to drink, EPA prescribes limits on the amount of certain contaminants in water provided by public water systems. US Food and Drug Administration regulations establish limits for contaminants in bottled water.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk.

As previously stated, our drinking water is drawn from wells which are not under the influence of surface water. Other sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, and springs.

As water travels over the land or through the ground, it dissolves naturally-occurring minerals and radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:

(a) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

(b) Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

(c) Pesticides and herbicides, which may come from a variety of sources such as agriculture, storm water runoff, and residential uses.

(d) Organic chemical contaminants, including synthetic and volatile organics, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff and septic systems.

(e) Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health. Some people may be more vulnerable to contaminants in drinking water than is the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Baton Rouge Water Company is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead
What Does the Table Mean?

The tables on the following pages were prepared in strict accordance with the United States Environmental Protection Agency National Primary Drinking Water Regulation (NPDWR): Consumer Confidence Reports (40 CFR 141 and 142). All testing was done by the Department of Health and Hospitals, State of Louisiana; by the USEPA; or by EPA or State certified laboratories. Information on contaminants reported in the table include the name of each substance, the highest level allowed by regulation (MCL), the ideal goals for public health (MCLG), the highest level detected in any sample, the range of levels detected, the usual sources of such contamination as determined by EPA, footnotes explaining our findings, and a key to units of measurement. The data in the report are from the most recent testing done in accordance with the regulations. The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Several important definitions are:

AL = Action Level - The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

TT = Treatment Technique - TT is a required process intended to reduce the level of a contaminant in drinking water.

ppm = Parts per million or milligrams per liter (mg/l)

ppt = Parts per trillion or ng/l

MCL = Maximum Contamination Level - The highest level of a contaminant allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best treatment technology.

MRDL = Maximum Residual Disinfectant Level - The highest level of a disinfectant allowed in drinking water. There is evidence that addition of a disinfectant helps control microbial contaminants.

MRDLG = Maximum Residual Disinfectant Level Goal - The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

MCLG = Maximum Contamination Level Goal - The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

ntu = nephelometric turbidity units (a measure of turbidity).
Regulated Contaminants

<table>
<thead>
<tr>
<th>Date</th>
<th>Violation</th>
<th>Unit</th>
<th>MCL</th>
<th>MCLG</th>
<th>Lowest</th>
<th>Highest</th>
<th>Major Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td>12/5/2017</td>
<td>NO</td>
<td>ppb</td>
<td>10</td>
<td>0</td>
<td>ND</td>
<td>1.00 Erosion of natural deposits; runoff from orchards; runoff from glass and electronics production wastes.</td>
</tr>
<tr>
<td>Benzo(A)Pyrene</td>
<td>7/18/2017</td>
<td>NO</td>
<td>ppt</td>
<td>200</td>
<td>0</td>
<td>ND</td>
<td>20.00 Leaching from linings of water storage tanks and distribution lines.</td>
</tr>
<tr>
<td>Di(2-ethylhexyl) phthalate</td>
<td>9/24/2018</td>
<td>NO</td>
<td>ppb</td>
<td>6</td>
<td>0</td>
<td>ND</td>
<td>0.67 Discharge from rubber and chemical factories.</td>
</tr>
<tr>
<td>Fluoride</td>
<td>9/24/2018</td>
<td>NO</td>
<td>ppm</td>
<td>4</td>
<td>4</td>
<td>ND</td>
<td>0.90 Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories.</td>
</tr>
<tr>
<td>Nitrate-Nitrite</td>
<td>9/29/2019</td>
<td>NO</td>
<td>ppm</td>
<td>10</td>
<td>10</td>
<td>ND</td>
<td>0.2 Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits.</td>
</tr>
<tr>
<td>Simazine</td>
<td>4/29/2019</td>
<td>NO</td>
<td>ppb</td>
<td>4</td>
<td>4</td>
<td>ND</td>
<td>0.22 Herbicide runoff.</td>
</tr>
</tbody>
</table>

Regulated Contaminants

<table>
<thead>
<tr>
<th>Date</th>
<th>Violation</th>
<th>Unit</th>
<th>MCL</th>
<th>MCLG</th>
<th>Lowest</th>
<th>Highest</th>
<th>Major Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined Radium (-226 & -228)</td>
<td>6/27/2017</td>
<td>NO</td>
<td>pCi/L</td>
<td>5</td>
<td>0</td>
<td>ND</td>
<td>1.84 Erosion of natural deposits</td>
</tr>
<tr>
<td>Gross Alpha Particle Activity</td>
<td>10/24/2019</td>
<td>NO</td>
<td>pCi/L</td>
<td>15</td>
<td>0</td>
<td>ND</td>
<td>4.02 Erosion of natural deposits</td>
</tr>
<tr>
<td>Gross Beta Particle Activity</td>
<td>10/24/2019</td>
<td>NO</td>
<td>pCi/L</td>
<td>50</td>
<td>0</td>
<td>ND</td>
<td>4.76 Decay of natural and man-made deposits. Note: The gross beta particle activity MCL is 4 millirems/year annual dose equivalent to the total body or any internal organ. 50 pCi/L is used as a screening level.</td>
</tr>
</tbody>
</table>

Notes to accompany table

1 “Units” have been modified from the traditional MCL reporting units of mg/l to units which provide detected level numbers greater than one (1). This has been done to comply with the EPA requirements for this report. Use caution when comparing detected levels in this table to MCLs listed elsewhere.

2 “Major Sources” were taken verbatim from the EPA regulation. We have no data to indicate there are any local/manmade sources of these contaminants in our water.

(AL = Action Level; MCL = Maximum Contaminant Level; MCLG = Maximum Contaminant Level Goal; ND = Not Detected; MRL=Minimum Reporting Level; pCi/L = Pico curies per liter; ppm = parts per million = milligrams per liter; ppb = parts per billion = micrograms per liter; ppt = parts per trillion (ng/l); LRAA = Locational Running Annual Average.)
Disinfection Byproducts

<table>
<thead>
<tr>
<th>Regulated Contaminants</th>
<th>Sample Point</th>
<th>Period</th>
<th>Highest LRAA</th>
<th>Range</th>
<th>Unit</th>
<th>MCL</th>
<th>MCLG</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Haloacetic Acids (HAA5)</td>
<td>14061 Troy Duplessis</td>
<td>2019</td>
<td>2</td>
<td>0.6-5.1</td>
<td>ppm</td>
<td>60</td>
<td>0</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>Total Haloacetic Acids (HAA5)</td>
<td>40250 Pelican Point</td>
<td>2019</td>
<td>1.6</td>
<td>0.9-3.2</td>
<td>ppm</td>
<td>60</td>
<td>0</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>Total Haloacetic Acids (HAA5)</td>
<td>9526 Arleen Dr</td>
<td>2019</td>
<td>5</td>
<td>4-7.1</td>
<td>ppm</td>
<td>60</td>
<td>0</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>Total Haloacetic Acids (HAA5)</td>
<td>Gen Ben Davis @ Vets</td>
<td>2019</td>
<td>2.6</td>
<td>1-3.7</td>
<td>ppm</td>
<td>60</td>
<td>0</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>TTHM</td>
<td>14061 Troy Duplessis</td>
<td>2019</td>
<td>0</td>
<td>0</td>
<td>ppm</td>
<td>80</td>
<td>0</td>
<td>By-product of drinking water chlorination</td>
</tr>
<tr>
<td>TTHM</td>
<td>40250 Pelican Point</td>
<td>2019</td>
<td>0</td>
<td>0</td>
<td>ppm</td>
<td>80</td>
<td>0</td>
<td>By-product of drinking water chlorination</td>
</tr>
<tr>
<td>TTHM</td>
<td>9526 Arleen Dr</td>
<td>2019</td>
<td>6</td>
<td>5.1-6.9</td>
<td>ppm</td>
<td>80</td>
<td>0</td>
<td>By-product of drinking water chlorination</td>
</tr>
<tr>
<td>TTHM</td>
<td>Gen Ben Davis @ Vets</td>
<td>2019</td>
<td>1</td>
<td>0-1.2</td>
<td>ppm</td>
<td>80</td>
<td>0</td>
<td>By-product of drinking water chlorination</td>
</tr>
</tbody>
</table>

Lead and Copper

<table>
<thead>
<tr>
<th>Regulated Contaminants</th>
<th>Date</th>
<th>Violation</th>
<th>Unit</th>
<th>90th Percentile</th>
<th>AL</th>
<th>Sites Over AL</th>
<th>Major Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead</td>
<td>2019</td>
<td>NO</td>
<td>ppb</td>
<td>2</td>
<td>15</td>
<td>0</td>
<td>Corrosion of household plumbing systems; erosion of natural deposits.</td>
</tr>
</tbody>
</table>

Notes to accompany table

1. “Units” have been modified from the traditional MCL reporting units of mg/l to units which provide detected level numbers greater than one (1). This has been done to comply with the EPA requirements for this report. Use caution when comparing detected levels in this table to MCLs listed elsewhere.

2. “Major Sources” were taken verbatim from the EPA regulation. We have no data to indicate there are any local/manmade sources of these contaminants in our water.

(AL = Action Level; MCL = Maximum Contaminant Level; MCLG = Maximum Contaminant Level Goal; ND = Not Detected; MRL=Minimum Reporting Level; pCi/L = Pico curies per liter; ppm = parts per million = milligrams per liter; ppb = parts per billion = micrograms per liter; LRAA = Locational Running Annual Average.)
Important Additional Information About Lead and Copper in Drinking Water

Concentrations of lead found in drinking water are not typically derive from natural sources. Instead, the most common cause of lead and copper concentrations in potable water is from the gradual corrosion of water supply pipes and plumbing fixtures as well as the solder, or flux, used for installation and repair. Most current regulatory efforts to control lead in drinking water focus primarily on reducing the lead content of these system components. The Baton Rouge Water Company’s distribution system is composed of Cast Iron, Ductile Iron, Steel, Galvanized, PE, PVC, and AC mains with copper and polyethylene tubing used for service lines (main to meter). All known lead services have been removed during various reconstruction programs many years ago.

<table>
<thead>
<tr>
<th>Lead and Copper</th>
<th>Date</th>
<th>90th Percentile</th>
<th>Range</th>
<th>Unit</th>
<th>AL</th>
<th>Sites</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead</td>
<td>2019</td>
<td>2</td>
<td>0 - 14</td>
<td>ppb</td>
<td>15</td>
<td>0</td>
<td>Corrosion of household plumbing systems; Erosion of natural deposits</td>
</tr>
<tr>
<td>Copper</td>
<td>2019</td>
<td>0</td>
<td>0 - 0</td>
<td>ppm</td>
<td>1.3</td>
<td>0</td>
<td>Corrosion of household plumbing systems; Erosion of natural deposits</td>
</tr>
</tbody>
</table>

The results from the latest Lead and Copper Samples are found in the table below.

Baton Rouge Water is on reduced monitoring following the EPA Lead and Copper Rule (LCR). We take 50 samples from a predetermine pool of homes every 3 years. These 50 homes are from the following EPA LCR classifications;

- **Tier 1** Single Family Structures: Homes with copper pipes with lead solder installed after 1982 (but before 1988)
- **Tier 2** Building, Including Multiple Family Residences: Locations with copper pipes with lead solder installed after 1982 (but before 1988)
- **Tier 3** Locations with copper pipes with lead solder installed before 1982

These are some important tips to reduce exposure to lead and copper found in your home plumbing system.

1) Run your water to flush any potential contaminants out. If the water hasn’t been used for several hours, run water for 15-30 seconds to flush interior plumbing or until it becomes cold or reaches a steady temperature before using it for drinking or cooking.

2) Use cold water for cooking, drinking and preparing baby formula.

3) Boiling water will not remove lead or copper.

4) Identify if your plumbing fixtures may contain lead.

For More Information you can contact us at (225) 925-2011.

Visit EPA’s Web site at www.epa.gov/lead, call the National Lead Information Center at 800-424-LEAD, or contact your health care provider.

Notes to accompany table

1 Under the authority of the Safe drinking Water Act, the U.S. Environmental Protection Agency (EPA) set the action level for lead in drinking water at 15 ppb. This means utilities must ensure that water from the customer’s tap does not exceed this level in at least 90 percent of the homes sampled (90th percentile value). The action level is the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow. Because lead may pose serious health risks, the EPA set a Maximum Contaminant Level Goal (MCLG) of zero for lead. The MCLG is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of Safety.